Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Biomol Struct Dyn ; : 1-11, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38407190

RESUMO

The Unfolded protein response (UPR) is an adaptive signalling pathway which is triggered by accumulation of unfolded/misfolded protein in ER lumen. The UPR consist of three transmembrane proteins-IRE1α, PERK and ATF6 that sense ER stress which leads to activation and downstream signaling from ER lumen to cytosol to restore homeostasis. IRE1α is an evolutionary conserved arm of UPR and acts as an interaction platform for many potential proteins that become activated under ER stress conditions. We investigated potential partners of IRE1 α through MS studies and found EXOSC3 as one of the binding partner of IRE1α. Exosomal complex proteins have 3'5' exonuclease properties (EXOSC3) that play an important role in mRNA surveillance. This property of exosomal proteins coincides with IRE1α ribonuclease activities and its mechanism of action is similar to that of IRE1α-RIDD pathway which degrades any unstable mRNA that disrupts cellular homeostasis. At the same time, studies have shown that knockdown of EXOSC3 causes ER stress in human cells, so we speculated that there might be a functional crosstalk between IRE1α and EXOSC3 under ER stress conditions. Therefore, we employed computational tools to predict and explore the stability and dynamics of the IRE1α-EXOSC3 complex. The analysis indicates that IRE1α and EXOSC3 exhibit potential interaction with the involvement of ScanNet, predicting binding pockets between the two proteins. Further, the interaction was validated via co-immunoprecipitation and yeast two-hybrid assays, thus suggesting EXOSC3 as a component of the UPRosome complex. Hence, this functional crosstalk might influence the dynamic functional output of IRE1α.Communicated by Ramaswamy H. Sarma.

2.
MicroPubl Biol ; 20232023.
Artigo em Inglês | MEDLINE | ID: mdl-37065768

RESUMO

IRE1 belongs to a type I transmembrane protein family harboring two functional domains, cytoplasmic domain with kinase and RNAse catalytic activity, and the luminal domain, which is involved in the sensing of unfolded proteins. IRE1 molecule undergoes dimerization in the lumenal domain, which functionally activates the catalytic C-terminal domain. IRE1 activation is directly related to transition between monomeric and dimeric forms. We have deduced two quaternary structures from the published crystal structure of IRE1. One structure with a large stable interface that requires large activation and deactivation energy to active IRE1. The other quaternary structure has low dissociation energy and is more suitable for IRE1 oligomeric transition.

3.
FEBS Lett ; 597(7): 962-974, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36723387

RESUMO

IRE1 is a transmembrane signalling protein that activates the unfolded protein response under endoplasmic reticulum stress. IRE1 is endowed with kinase and endoribonuclease activities. The ribonuclease activity of IRE1 can switch substrate specificities to carry out atypical splicing of Xbp1 mRNA or trigger the degradation of specific mRNAs. The mechanisms regulating the distinct ribonuclease activities of IRE1 have yet to be fully understood. Here, we report the Bcl-2 family protein Bid as a novel recruit of the IRE1 complex, which directly interacts with the cytoplasmic domain of IRE1. Bid binding to IRE1 leads to a decrease in IRE1 phosphorylation in a way that it can only perform Xbp1 splicing while mRNA degradation activity is repressed. The RNase outputs of IRE1 have been found to regulate the homeostatic-apoptotic switch. This study, thus, provides insight into IRE1-mediated cell survival.


Assuntos
Proteínas Serina-Treonina Quinases , Resposta a Proteínas não Dobradas , Estresse do Retículo Endoplasmático/fisiologia , Endorribonucleases/genética , Endorribonucleases/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ribonucleases/metabolismo , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo , Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo
4.
Life Sci ; 265: 118740, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33188833

RESUMO

The endoplasmic reticulum is primarily responsible for protein folding and maturation. However, the organelle is subject to varied stress conditions from time to time, which lead to the activation of a signaling program known as the Unfolded Protein Response (UPR) pathway. This pathway, upon sensing any disturbance in the protein-folding milieu sends signals to the nucleus and cytoplasm in order to restore homeostasis. One of the prime UPR signaling sensors is Inositol-requiring enzyme 1 (IRE1); an ER membrane embedded protein with dual enzyme activities, kinase and endoribonuclease. The ribonuclease activity of IRE1 results in Xbp1 splicing in mammals or Hac1 splicing in yeast. However, IRE1 can switch its substrate specificity to the mRNAs that are co-transnationally transported to the ER, a phenomenon known as Regulated IRE1 Dependent Decay (RIDD). IRE1 is also reported to act as a principal molecule that coordinates with other proteins and signaling pathways, which in turn might be responsible for its regulation. The current review highlights studies on IRE1 explaining the structural features and molecular mechanism behind its ribonuclease outputs. The emphasis is also laid on the molecular effectors, which directly or indirectly interact with IRE1 to either modulate its function or connect it to other pathways. This is important in understanding the functional pleiotropy of IRE1, by which it can switch its activity from pro-survival to pro-apoptotic, thus determining the fate of cells.


Assuntos
Endorribonucleases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Resposta a Proteínas não Dobradas , Animais , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Retículo Endoplasmático/metabolismo , Estresse do Retículo Endoplasmático , Humanos , Dobramento de Proteína , Transdução de Sinais , Especificidade por Substrato , Fatores de Transcrição/metabolismo , Proteína 1 de Ligação a X-Box/metabolismo
5.
Lung ; 196(4): 447-454, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29804144

RESUMO

PURPOSE: Different mutations in coding and non-coding sequences of the SERPINA1 gene have been implicated in the pathogenesis of COPD. However, - 10T/C mutation in the hepatocyte-directed promoter region has not been associated with COPD pathogenesis so far. Here, we report an increased frequency of - 10C genotype that is associated with decreased levels of serum alpha1-antitrypsin (α1AT) in COPD patients. METHODS: The quantification of serum α1AT was done by ELISA, the phenol-chloroform method was used for DNA extraction, PCR products were directly sequenced. The IBM SPSS Statistics v21 software was used for statistical analyses of the data. RESULTS: The mean serum α1AT level was found to be 1.203+0.239 and 3.162+0.160 g/L in COPD cases and in control, respectively. The - 10C allele is associated with an increased risk of COPD [OR, 3.50 (95%CI, 1.86-6.58); p < 0.001]. The combined variant genotype (TT+CC) was significantly found associated with an increased risk of COPD [OR, 3.20 (95% CI, 1.47-6.96); p = 0.003]. A significant association of the family history with COPD (overall p value= 0.0331) suggests that genetics may play an important role in the pathogenesis of COPD. CONCLUSION: The polymorphism associated with hepatocyte-specific promoter region (- 10T/C) is likely to be associated with the pathogenesis of COPD. It is quite possible that the change of the base in the hepatocyte-specific promoter of the SERPINA1 gene can modulate its strength, thereby driving the reduced expression of α1AT.


Assuntos
Hepatócitos/enzimologia , Polimorfismo de Nucleotídeo Único , Regiões Promotoras Genéticas , Doença Pulmonar Obstrutiva Crônica/genética , alfa 1-Antitripsina/genética , Estudos de Casos e Controles , Feminino , Frequência do Gene , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Índia/epidemiologia , Masculino , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/enzimologia , Doença Pulmonar Obstrutiva Crônica/etnologia , Fatores de Risco , alfa 1-Antitripsina/sangue
6.
Respir Med ; 117: 139-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27492524

RESUMO

Alpha1-antitrypsin (AAT) is one of the major circulating anti-protease whose levels in circulation are raised during excessive amount of proteases, especially neutrophil elastase (NE) released during the course of inflammation. Proteolytic attack of NE on peripheral organs, more exclusively on lung parenchyma has severe consequence that may precipitate pulmonary emphysema. Normally, human body has its own molecular and physiological mechanisms to synthesize and regulate the production of anti-protease like AAT to mitigate the extent of inflammatory damage. AAT coded by serine-protease inhibitor (SERPINA1) is predominantly expressed in hepatocytes and to some extent by macrophages, monocytes, lung tissue etc. The observation that persons with AAT deficiency developed chronic obstructive pulmonary disease (COPD) and early-onset of emphysema proposed a role for pathways connecting AAT in pathogenesis. Extensive studies have been done till now to bridge a connection between numerous genetic polymorphisms of SERPINA1 gene and the early onset of COPD. Here in this review, we have comprehensively discussed some of the variants of SERPINA1 gene discovered till date and their association with the exacerbation of obstructive pulmonary disease.


Assuntos
Doença Pulmonar Obstrutiva Crônica/genética , Deficiência de alfa 1-Antitripsina/genética , alfa 1-Antitripsina/genética , Adulto , Idoso , Progressão da Doença , Feminino , Humanos , Elastase de Leucócito/metabolismo , Masculino , Pessoa de Meia-Idade , Polimorfismo de Nucleotídeo Único/genética , Doença Pulmonar Obstrutiva Crônica/complicações , Doença Pulmonar Obstrutiva Crônica/epidemiologia , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , alfa 1-Antitripsina/metabolismo , Deficiência de alfa 1-Antitripsina/complicações , Deficiência de alfa 1-Antitripsina/epidemiologia , Deficiência de alfa 1-Antitripsina/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...